Authenticated Encryption

Active attacks on
CPA-secure encryption




Recap: the story so far

Confidentiality: semantic security against a CPA attack
* Encryption secure against eavesdropping only

Integrity:
e Existential unforgeability under a chosen message attack
e CBC-MAC, HMAC, PMAC, CW-MAC

{ive
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This module: encryption secure against tampering 4(/V€r.mr/)
* Ensuring both confidentiality and integrity



Sample tampering attacks

TCP/IP: (highly abstracted)

packet

dest=80 data

>

source machine

stack Bob
port = 25

destination machine



Sample tampering attacks

IPsec: (highly abstracted)

packet
dest =80 data

dest =25  stuff

packets encrypted
using key k

TCP/IP
stack




Reading someone else’s data

Note: attacker obtains decryption of any ciphertext
beginning with “dest=25"

1V, dest =80 data

Easy to do for CBC with rand. IV

(only IV is changed)



Encryption is done with CBC with a random |V.

What should IV’ be? m[0] = D(k, c[0]) ® IV = “dest=80...”

IV = IV (..25..)

V' =1V (...80..)

V=V (..80,.) @ (,25,) &~ %o

It can’t be done ok )Py, = 0(x c[a])QZk@/YD@lY
= .. 2§...




The lesson

CPA security cannot guarantee secrecy under active attacks.

If message needs both integrity and confidentiality:
use authenticated encryption modes



Authenticated Encryption

Definitions




Goals

An authenticated encryption system (E,D) is a cipher where
Asusual: E: KxM — C
but D: KxC~ N — MU{L}

k ciphertext

Security: the system must provide is rejected

* sem. security under a CPA attack, and

* ciphertext integrity:
attacker cannot create new ciphertexts that decrypt properly



Ciphertext integrity

Let (E,D) be a cipher with message space M.

m;, € M m, ,.. M

c, < E(km;) ¢ ,..,¢4

C

v
b=1 if D(k,c)#L and c ¢ {c;,..,cy}

b=0 otherwise

Def: (E,D) has ciphertext integrity (Cl) if for all “efficient” A:
Adv,[AE] = Pr[Chal. outputs 1] is “negligible.”




Authenticated encryption

Def: cipher (E,D) provides authenticated encryption (AE) if it is

(1) semantically secure under CPA, and
(2) has ciphertext integrity

Bad example: CBC with rand. IV does not provide AE

* D(k,*) never outputs L, hence adv. easily wins Cl game



Implication 1: authenticity

Attacker cannot fool Bob into thinking a

&

message was sent from Alice
C

- - m,, ..., mq
Alice b
c,= E(k, m) . R
k Cannot create
valid c&{cy, .., cy}

= if D(k,c) #.L Bob knows message is from someone who knows k
(but message could be a replay)



Implication 2

Authenticated encryption =

Security against chosen ciphertext attacks



Authenticated Encryption

Chosen ciphertext
attacks




Chosen ciphertext security

Adversary’s power: both CPA and CCA
e (Can obtain the encryption of arbitrary messages of his choice

* Can decrypt any ciphertext of his choice, other than challenge

(conservative modeling of real life)

Adversary’s goal: Break sematic security



Chosen ciphertext security: definition

E =(E,D) cipher defined over (K,M,C).

Chal.

k<—K

fori=1,...,q:
(1) CPA query:

Mo, M €M [m|=|m,,]

C, < E(k, m; )

(2) CCA query:

ceC: c¢é&{cy .. Cyl

P
N}

v

m, <— D(k, ¢;)

v

Adv.

b’ e

For b=0,1 define EXP(b):

10,1}



Chosen ciphertext security: definition

E is CCA secure if for all “efficient” A:

Advees IVE] = | PrIEXP(0)=1] = PrlEXP(1)=1] | is “negligible.”

Example: CBC with rand. IV is not CCA-secure

my, My : |mg| = |[m,|=1-block
Chal. ) R Adv.
c < E(k, my) = (1V, c[0])
k<K
¢’ = (IV@1, c[0]) learn
1 b b

D(k, ¢’) =m, D1




Authenticated enc. = CCA security

Thm: Let (E,D) be a cipher that provides AE.
Then (E,D) is CCA secure !

In particular, for any g-query eff. A there exist eff. B;, B, s.t.

AdV A [A E] € 2G-Advg[By,E] + Advp[B,,E]



So what?

Authenticated encryption:

* ensures confidentiality against an active adversary
that can decrypt some ciphertexts

Limitations:
* does not prevent replay attacks

* does not account for side channels (timing)



Authenticated Encryption

Constructions from
ciphers and MACs




... but first, some history

Authenticated Encryption (AE): introduced in 2000

Crypto APIs before then: (e.g. MS-CAPI)
* Provide API for CPA-secure encryption (e.g. CBC with rand. V)
* Provide APl for MAC (e.g. HMAC)

Every project had to combine the two itself without
a well defined goal

* Not all combinations provide AE ...



Combining MAC and ENC (CCA)

Encryption key k. MAC key = k;

QM: (SSL) S(kI, m) E(kE'm”tag)
msgtm ™ — msgm[ tag |— [
Option 2: (IPsec) E(k., m) S(ky, €)
E’ !
always R — B o = tag
correct 000000
Option 3: (SSH) E(k, , m) S(k;, m)

AN — &= —> | tag




A.E. Theorems

Let (E,D) be CPA secure cipher and (S,V)secure MAC. Then:
1. Encrypt-then-MAC: always provides A.E.

2. MAC-then-encrypt: may be insecure against CCA attacks

however: when (E,D) is rand-CTR mode or rand-CBC
M-then-E provides A.E.

for rand-CTR mode, one-time MAC is sufficient



Standards (at a high level)

* GCM (Galois/Counter Mode): CTR mode encryption then CW-MAC
*  CCM (counter with cBC-MAC): CBC-MAC then CTR mode encryption (802.11i)

e EAX (encrypt-then-authenticate-then-translate): CTR mode encryption then CMAC

All support AEAD: (auth. enc. with associated data).  All are nonce-based.

encrypted
[

associated data

authenticated



MAC Security -- an explanation
Recall: MAC security implies  (m,t) % (m,t")
Why? Supposenot: (m,t) — (m,t)

Then Encrypt-then-MAC would not have Ciphertext Integrity !!

mg,, M,
Chal. ) R Adv.
C < E(k, m)=(c, t
w (k, M) = (< 1) (Coit)
c’=(c,,t') #c ,
s o (COI t ) b
D(k, ¢’) =m,




OCB: a direct construction from a PRP

(Offset codebook mode)
More efficient authenticated encryption: one E() op. per block.

m|[O] m[1] m|[2] m|[3]
P(N,k,O)—»é P(N,k,l)—»é P(N,k,2)—>é P(N,k,3) P(N,k,0)—

e el aliy

P(N,k,O)HéB P(N,k,l)_.é-) P(N,k,2)4.é|—) P(N,k,3)4.é|-> auth




Performance: Coyptors 560 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

code Speed

Cipher size (MB/sec)

" AES/GCM  large™ 108
1 AES/CCM smaller 61
. AES/EAX smaller 61
AES/OCB 129°

* extrapolated from Ted Kravitz’s results ** non-Intel machines



Authenticated Encryption

Case study: TLS




The TLS Record Protocol (ris1.2)

HDR TLS record

Unidirectional keys:  k,_,. and k.,

Stateful encryption:
* Each side maintains two 64-bit counters: ctr,_,. , ctr._,
* Init. to O when session started. ctr++ for every record.

 Purpose: replay defense



TLS record: encryption (CBC AES-128, HMAC-SHA1)

type Il ver Il len

k

b—ss (kmac ’ kenc)

Browser side enc(k,_, , data, ctr,_, ) : /‘ ‘:.:f 'f:"c”:::";'“’/

step1: tage— S(k ., [ ++ctr,_,. Il header Il data] )

step2: pad [headerlldatalltag] to AES block size

step 3: CBC encrypt with k,,.and new random |V
step4: prepend header



TLS record: decryption (CBC AES-128, HMAC-SHA1)

Server side dec(k,_,, , record, ctr,_,.):
step1: CBCdecrypt record using k

enc

step 2: check pad format: send bad record mac if invalid

step 3: checktagon [++ctr,_ Il header Il data]
send bad_record_mac if invalid

Provides authenticated encryption
(provided no other info. is leaked during decryption)



Bugs in older versions (prior to TLS 1.1)

IV for CBC is predictable: (chained V)
IV for next record is last ciphertext block of current record.
Not CPA secure. (a practical exploit: BEAST attack)

Padding oracle: during decryption
if pad is invalid send decryption failed alert
if mac is invalid send bad_record _mac alert
= attacker learns info. about plaintext

Lesson: when decryption fails, do not explain why



Leaking the length

The TLS header leaks the length of TLS records

* Lengths can also be inferred by observing network traffic

For many web applications, leaking lengths reveals sensitive info:

* |n tax preparation sites, lengths indicate the type of return being
filed which leaks information about the user’s income

* In healthcare sites, lengths leaks what page the user is viewing
* In Google maps, lengths leaks the location being requested

No easy solution



802.11b WEP: how notto do it

802.11b WEP:

- m ] crem)
PRG( IV Il k)

- ciphetext

Ak

Previously discussed problems:
two time pad and related PRG seeds



Active attacks

Fact: CRCislinear,i.e. ¥m,p: CRC(m @ p)=CRC(m) & F(p)

WeP cphertext: TN FEEETHET TR R

attacker: 000.......00.... XX...0000.. | F(XX)

XX = 25080 dest-port' =25 data } CRC

Upon decryption: CRCis valid, but ciphertextis changed !!



Authenticated Encryption

CBC paddings attacks




The TLS record protocol (csc encryption)

Decryption: dec(k,_, , record, ctr,_,.):

step 1: CBC decrypt record using k

enc

step 2: check pad format: abort if invalid

step 3: checktagon [ ++ctr,_ Il header Il data]
abort if invalid

type | ver Il len

Two types of error:
e padding error
* MAC error




Padding oracle

Suppose attacker can differentiate the two errors
(pad error, MAC error):

= Padding oracle:
attacker submits ciphertext and learns if
last bytes of plaintext are a valid pad

type | ver Il len

Nice example of a
chosen ciphertext attack




Padding oracle via timing OpenSSL

bad 200d pad

Credit: Brice Canvel

L N AV i (fixed in OpenSSL 0.9.7a)
18 | 50 - 2‘2 _2.4 - :2:3 o 2;7-* 30 ) 32
Time (in 1/1000s)

In older TLS 1.0: padding oracle due to different alert messages.



Using a padding oracle (cBc encryption)
Attacker has ciphertext ¢ =(c[0], c[1], c[2]) and it wants m[1]

m[O] m[1] m[2] Il pad




Using a padding oracle (cBc encryption)

step 1: let € be a guess for the last byte of m[1]

- N

IV
o @ g @ 0x01

= last-byte @ g @ 0x01

if last-byte = g: valid pad

m[0] mia] [

otherwise: invalid pad



Using a padding oracle (cBc encryption)

Attack: submit (1V, c’[0], c[1]) to padding oracle

= attacker learns if last-byte=g
Repeat with g=0,1, ..., 255 to learn last byte of m[1]

Then use a (02, 02) pad to learn the next byte and so on ...

16x256 queries =2 m[1]



IMAP over TLS

Problem: TLS renegotiates key when an invalid record is received

Enter IMAP over TLS: (protocol for reading email)

* Every five minutes client sends login message to server:

/1

LOGIN "username” "password”

* Exact same attack works, despite new keys
= recovers password in a few hours.



Lesson

1. Encrypt-then-MAC would completely avoid this problem:

MAC is checked first and ciphertext discarded if invalid

2. MAC-then-CBC provides A.E., but padding oracle destroys it



Will this attack work if TLS used counter mode instead of CBC?
(i.e. use MAC-then-CTR)

Yes, padding oracles affect all encryption schemes
It depends on what block cipher is used

No, counter mode need not use padding /——



Authenticated Encryption

Attacking non-atomic
decryption




SSH Binary Packet Protocol

CBC encryption (chained IV)

seq. packet pad s
num. len: len:

\ )

\ MAC computed

over plaintext

Decryption:

* step 1: decrypt packet length field only (!)

* step 2: read as many packets as length specifies
e step 3: decrypt remaining ciphertext blocks

* step 4: check MAC tag and send error response if invalid



An attack on the enc. length field impifieq)

Attacker has one ciphertext block ¢ = AES(k, m) and it wants m

one AES block
seq.
<
>
c l decrypt
and obtain
_ “len” field

> \

send bytes one at a time

when “len” bytes read:

<
server sends “MAC error”

attacker learns 32 LSB bits of m !




Lesson

The problem: (1) non-atomic decrypt
(2) len field decrypted and used before it is authenticated

How would you redesign SSH to resist this attack?

=) Send the length field unencrypted (but MAC-ed)
Replace encrypt-and-MAC by encrypt-then-MAC
=5, Add a MAC of (seg-num, length) right after the len field

Remove the length field and identify packet boundary
by verifying the MAC after every received byte



