
Authenticated Encryption

Active attacks on 
CPA-secure encryption



Recap:  the story so far

Confidentiality:    semantic security against a CPA attack

• Encryption secure against eavesdropping only

Integrity:

• Existential unforgeability under a chosen message attack

• CBC-MAC,  HMAC,  PMAC,  CW-MAC

This module:   encryption secure against tampering

• Ensuring both confidentiality and integrity 



Sample tampering attacks

TCP/IP:   (highly abstracted)

WWW
port = 80

Bob
port = 25

dest = 80      data

packet

source machine

destination machine

TCP/IP
stack



Sample tampering attacks

IPsec:  (highly abstracted)

WWW
port = 80

Bob
port = 25

k
k

dest = 80      data

packet

packets encrypted
using key k

TCP/IP
stack

dest = 25      stuff



Reading someone else’s data

WWW
port = 80

Bob
port = 25

k
k

dest = 80      data

Easy to do for CBC with rand. IV

(only IV is changed)

Note:  attacker obtains decryption of any ciphertext

beginning with “dest=25”

dest = 25      data

Bob:

IV,

IV’,



dest = 80      data dest = 25      dataIV , IV’ ,

Encryption is done with CBC with a random IV.

What should IV’ be?       

IV’ = IV ⨁ (…25…) 

IV’ = IV ⨁ (…80…)

IV’ = IV ⨁ (…80…) ⨁ (…25…) 

It can’t be done

m[0] = D(k, c[0]) ⨁ IV  = “dest=80…”     



The lesson

CPA security cannot guarantee secrecy under active attacks.

If message needs both integrity and confidentiality:

use authenticated encryption modes



Authenticated Encryption

Definitions



Goals
An authenticated encryption system (E,D) is a cipher where 

As usual:     E:  K × M × N ⟶ C

but               D:  K × C × N ⟶ M ∪{⊥}

Security:   the system must provide

• sem. security under a CPA attack,  and

• ciphertext integrity:  
attacker cannot create new ciphertexts that decrypt properly

ciphertext
is rejected



Ciphertext integrity
Let  (E,D)  be a cipher with message space M.   

Def:  (E,D)  has ciphertext integrity (CI) if for all “efficient” A:

AdvCI[A,E] =  Pr[Chal. outputs 1] is “negligible.”

Chal. Adv.

kK

c

m1 M

c1  E(k,m1)

b=1    if  D(k,c) ≠⊥ and  c   { c1 , … , cq }

b=0   otherwise

b

m2 , …, mq

c2 , …, cq



Authenticated encryption

Def:   cipher  (E,D)  provides authenticated encryption (AE) if it is

(1)   semantically secure under CPA, and

(2)   has ciphertext integrity

Bad example:    CBC with rand. IV does not provide AE

• D(k,⋅) never outputs  ⊥,  hence adv. easily wins CI game



Implication 1:   authenticity
Attacker cannot fool Bob into thinking a 
message was sent from Alice

Alice Bob

k k

m1 , …,  mq

ci = E(k, mi)

c

Cannot create 
valid   c ∉ { c1, …, cq }

⇒ if  D(k,c) ≠⊥ Bob knows message is from someone who knows k
(but message could be a replay) 



Implication 2

Authenticated encryption    ⇒

Security against chosen ciphertext attacks



Authenticated Encryption

Chosen ciphertext
attacks



Chosen ciphertext security

Adversary’s power:    both CPA and CCA

• Can obtain the encryption of arbitrary messages of his choice

• Can decrypt any ciphertext of his choice, other than challenge

(conservative modeling of real life)

Adversary’s goal:    Break sematic security



Chosen ciphertext security:  definition

E = (E,D)  cipher defined over  (K,M,C).    For   b=0,1   define EXP(b):

Chal.

b
Adv.

kK

b’  {0,1}

mi,0 , mi,1   M :    |mi,0| = |mi,1|

ci  E(k, mi,b)

for i=1,…,q:

(1)   CPA query:

(2)   CCA query:

ci  C :     ci ∉ {c1, …, ci-1}

mi  D(k, ci)



Chosen ciphertext security: definition

E is CCA secure if for all “efficient”  A:

AdvCCA [A,E]  =  |Pr[EXP(0)=1] – Pr[EXP(1)=1] |  is “negligible.”

Example:    CBC with rand. IV is not CCA-secure

Chal.

b
Adv.

kK

m0 , m1  :       |m0| = |m1|=1-block

c  E(k, mb) = (IV, c[0])

c’ = (IV⨁1, c[0])

D(k, c’) = mb⨁1
b



Authenticated enc. ⇒ CCA security

Thm: Let (E,D) be a cipher that provides AE.    

Then (E,D) is CCA secure !

In particular, for any q-query eff. A there exist eff. B1, B2 s.t.

AdvCCA[A,E] ≤ 2q⋅AdvCI[B1,E] + AdvCPA[B2,E]



So what?

Authenticated encryption:

• ensures confidentiality against an active adversary   
that can decrypt some ciphertexts

Limitations:    

• does not prevent replay attacks

• does not account for side channels (timing)



Authenticated Encryption

Constructions from 
ciphers and MACs



… but first,  some history

Authenticated Encryption (AE):     introduced in 2000

Crypto APIs before then:     (e.g.   MS-CAPI)

• Provide API for CPA-secure encryption  (e.g. CBC with rand. IV)

• Provide API for MAC  (e.g. HMAC)

Every project had to combine the two itself without 
a well defined goal

• Not all combinations provide AE …



Combining MAC and ENC   (CCA)
Encryption key  kE.      MAC key = kI

Option 1:   (SSL)

Option 2:   (IPsec)

Option 3:   (SSH)

msg m msg m tag

E(kE , mlltag)S(kI, m)

msg m

E(kE, m)

tag

S(kI, c)

msg m

E(kE , m)

tag

S(kI, m)

always
correct



A.E.   Theorems

Let   (E,D)   be CPA secure cipher   and   (S,V) secure MAC.    Then:

1. Encrypt-then-MAC:   always provides  A.E.

2. MAC-then-encrypt:   may be insecure against CCA attacks

however:    when  (E,D)  is  rand-CTR mode or rand-CBC
M-then-E  provides  A.E. 

for rand-CTR mode, one-time MAC is sufficient



Standards  (at a high level)

• GCM (Galois/Counter Mode): CTR mode encryption then CW-MAC

• CCM (counter with CBC-MAC): CBC-MAC then CTR mode encryption (802.11i)

• EAX (encrypt-then-authenticate-then-translate): CTR mode encryption then CMAC

All support AEAD:  (auth. enc. with associated data).       All are nonce-based. 

encrypted dataassociated data

authenticated

encrypted



MAC Security  -- an explanation
Recall:    MAC security implies       (m , t)              (m , t’ )

Why?     Suppose not:     (m , t)   ⟶ (m , t’)

Then Encrypt-then-MAC would not have Ciphertext Integrity !!

⇏

Chal.

b
Adv.

kK

m0, m1

c  E(k, mb) = (c0, t)

c’ = (c0 , t’ )    ≠ c

D(k, c’) = mb

b

(c0, t) 

(c0, t’) 



OCB:  a direct construction from a PRP

More efficient authenticated encryption:  one E() op. per block. 

m[0] m[1] m[2] m[3]

  

E(k,) E(k,) E(k,)E(k,)

P(N,k,0) P(N,k,1) P(N,k,2) P(N,k,3)

  P(N,k,0) P(N,k,1) P(N,k,2) P(N,k,3)

c[0] c[1] c[2] c[3]

checksum

E(k,)





c[4]

P(N,k,0)

auth

(Offset codebook mode)



Performance: Crypto++  5.6.0      [ Wei Dai ]

AMD Opteron,   2.2 GHz     ( Linux)

code Speed
Cipher size (MB/sec)

AES/GCM large** 108 AES/CTR 139

AES/CCM smaller 61 AES/CBC 109

AES/EAX smaller 61
AES/CMAC 109

AES/OCB 129* HMAC/SHA1 147

* extrapolated from Ted Kravitz’s results        ** non-Intel machines



Authenticated Encryption

Case study:  TLS



The TLS Record Protocol  (TLS 1.2)

Unidirectional keys:      kb⇾s and   ks⇾b

Stateful encryption:

• Each side maintains two 64-bit counters:    ctrb⇾s ,  ctrs⇾b

• Init. to 0 when session started.     ctr++ for every record.

• Purpose:    replay defense

kb⇾s , ks⇾b kb⇾s , ks⇾b

TLS recordHDR



TLS record:  encryption   (CBC AES-128,   HMAC-SHA1)

kb⇾s = (kmac , kenc)

Browser side   enc(kb⇾s , data, ctrb⇾s ) : 

step 1:     tag ⟵ S( kmac ,   [ ++ctrb⇾s ll header  ll data] )

step 2:     pad   [ header ll data ll tag ] to AES block size

step 3:     CBC encrypt with kenc and new random IV

step 4:     prepend header

data

type ll ver ll len

tag
pad



TLS record:  decryption (CBC AES-128,   HMAC-SHA1)

Server side   dec(kb⇾s , record, ctrb⇾s ) : 

step 1:     CBC decrypt record using kenc

step 2:     check pad format:  send bad_record_mac if invalid

step 3:     check tag on    [ ++ctrb⇾s ll header  ll data]

send bad_record_mac if invalid

Provides authenticated encryption

(provided no other info. is leaked during decryption)



Bugs in older versions  (prior to TLS 1.1)

IV for CBC is predictable:     (chained IV)

IV for next record is last ciphertext block of current record.

Not CPA secure.    (a practical exploit: BEAST attack)

Padding oracle:     during decryption

if pad is invalid send decryption failed alert

if mac is invalid send bad_record_mac alert

⇒ attacker learns info. about plaintext

Lesson:   when decryption fails, do not explain why



Leaking the length

The TLS header leaks the length of TLS records

• Lengths can also be inferred by observing network traffic

For many web applications, leaking lengths reveals sensitive info:

• In tax preparation sites, lengths indicate the type of return being 
filed which leaks information about the user’s income

• In healthcare sites, lengths leaks what page the user is viewing

• In Google maps, lengths leaks the location being requested

No easy solution



802.11b WEP:   how not to do it

802.11b WEP:

Previously discussed problems:   
two time pad and related PRG seeds

k k

m CRC(m)

PRG(  IV  ll k ) 

ciphetextIV



Active attacks

Fact:   CRC is linear, i.e.    ∀m,p: CRC( m ⨁ p) = CRC(m) ⨁ F(p)

dest-port = 80     data              CRCIVWEP ciphertext:

attacker: 000…….00…..XX…0000…              F(XX)
⨁

IV dest-port = 25     data              CRC’XX = 25⨁80

Upon decryption:    CRC is valid,   but ciphertext is changed  !!



Authenticated Encryption

CBC paddings attacks



The TLS record protocol   (CBC encryption)

Decryption:    dec(kb⇾s , record, ctrb⇾s ) : 

step 1:     CBC decrypt record using kenc

step 2:     check pad format:  abort if invalid

step 3:     check tag on    [ ++ctrb⇾s ll header  ll data]
abort if invalid

data

type ll ver ll len

tag
pad

Two types of error:

• padding error

• MAC error



Padding oracle

data

type ll ver ll len

tag
pad

Suppose attacker can differentiate the two errors 
(pad error, MAC error):

⇒ Padding oracle:    
attacker submits ciphertext and learns if 
last bytes of plaintext are a valid pad

Nice example of a 
chosen ciphertext attack



Padding oracle via timing OpenSSL

Credit:  Brice Canvel

(fixed in OpenSSL 0.9.7a)

In older TLS 1.0:   padding oracle due to different alert messages.



Using a padding oracle   (CBC encryption)

D(k,) D(k,)

m[0] m[1] m[2]   ll pad

 

D(k,)



c[0] c[1] c[2]IV

Attacker has ciphertext c = (c[0], c[1], c[2])   and it wants  m[1]



Using a padding oracle   (CBC encryption)

D(k,) D(k,)

m[0] m[1]

 

c[0] c[1]IV

step 1:    let  g be a guess for the last byte of   m[1] 

⨁ g ⨁ 0x01

= last-byte ⨁ g ⨁ 0x01 

if last-byte = g:   valid pad

otherwise:      invalid pad



Using a padding oracle   (CBC encryption)

Attack:   submit    ( IV, c’[0],  c[1] )  to padding oracle

⇒ attacker learns if  last-byte = g

Repeat  with   g = 0,1, …, 255  to learn last byte of m[1]

Then use a  (02, 02)  pad to learn the next byte and so on …

16x256 queries →m[1]



IMAP over TLS

Problem:   TLS renegotiates key when an invalid record is received 

Enter IMAP over TLS:     (protocol for reading email)

• Every five minutes client sends login message to server:
LOGIN "username” "password”

• Exact same attack works, despite new keys

⇒ recovers password in a few hours.



Lesson

1.  Encrypt-then-MAC would completely avoid this problem:

MAC is checked first and ciphertext discarded if invalid

2.  MAC-then-CBC provides A.E., but padding oracle destroys it



Will this attack work if TLS used counter mode instead of CBC?

(i.e.  use  MAC-then-CTR )

Yes, padding oracles affect all encryption schemes

It depends on what block cipher is used

No, counter mode need not use padding



Authenticated Encryption

Attacking non-atomic 
decryption



SSH Binary Packet Protocol

Decryption:

• step 1:  decrypt packet length field only (!)

• step 2:  read as many packets as length specifies

• step 3:  decrypt remaining ciphertext blocks

• step 4:  check MAC tag and send error response if invalid 

seq.
num.

packet
len.

pad
len.

payload pad
MAC
tag

CBC encryption   (chained IV)

MAC computed 
over plaintext



An attack on the enc. length field  (simplified)

Attacker has one ciphertext block  c = AES(k, m)   and it wants  m

k

seq.
num.

c
one AES block

decrypt
and obtain
“len” fieldlen

send bytes one at a time

when “len” bytes read:  
server sends “MAC error”

attacker learns 32 LSB bits of m  !!

5



Lesson
The problem:   (1) non-atomic decrypt  

(2) len field decrypted and used before it is authenticated

How would you redesign SSH to resist this attack?

Send the length field unencrypted (but MAC-ed)  

Replace encrypt-and-MAC by encrypt-then-MAC

Add a MAC of (seq-num, length) right after the len field

Remove the length field and identify packet boundary
by verifying the MAC after every received byte


